THE INFIMA AND SUPREMA OF FAMILIES OF TOPOLOGIES* #### CHING-MU WU #### 1. Introduction. Let R and I be two nonempty sets and let I consist of two or more elements. For each $\mu \in I$, let τ_{μ} be a topology for R. Then the inf of the set of topologies, $\wedge \{\tau_{\mu}: \mu \in I\}$ is a topology for R, called the inf topology. The sup of these topologies, $\vee \{\tau_{\mu}: \mu \in I\}$ is also a topology for R, the sup topology. Norman Levine indicated in (2) that the family $\{\mathcal{J}_{\alpha}:\alpha\in I\}$ of topologies for X generates a topology \mathcal{J} for X in the following natural way:a subset O of X is in \mathcal{J} iff for each $x\in O$, there exist α_1,\dots,α_n in I and $U_i\in \mathcal{J}_{\alpha_i}$ such that $x\in U_1\cap\dots\cap U_n\subset O$. (See (2)). However, this topology is none other than the inf topology for R if we take R=X. In this paper the author provides some properties of inf topologies and related group topologies in §2, and then provides some properties among inf and sup topologies in §3. ## 2. Inf topologies and related group topologies. In the following theorems we designate by τ the inf topology $\land \{\tau_{\mu}: \mu \in I\}$. Let (D^*, τ^*) be the diagonal of the product space $(\times R, \times \tau_{\mu})$, $\mu \in I$, where τ^* is the topology induced by the product topology $\times \tau_{\mu}$ on the diagonal D^* . Here $\xi^* \in D^*$ iff $\xi^*: I \to R$ is a constant. **THEOREM 1.** (R, τ) is homeomorphic to (D^*, τ^*) . Note. This theorem is the fundamental theorem provided by Levine in (2). **THEOREM 2.** For each $\mu \in I$, (R, τ_{μ}) is a continuous, one-to-one image of (R, τ) . Proof. Let φ_{μ} : $(R, \tau) \to (R, \tau_{\mu})$, $\mu \in I$, be a map defined by $\varphi_{\mu}p = p$ for all $p \in R$. Then φ_{μ} is evidently one-to-one and onto. If $\tau_1 \leq \tau_2$, then every τ_2 -open set is τ_1 -open. Hence φ_{μ} is continuous by $\tau \leq \tau_{\mu}$ for every $\mu \in I$. **THEOREM 3.** If D^* is closed, then (R, τ) is T_2 . Note. This theorem is provided by Levine in (2). ^{*}The work on this paper was supported by a grant from the Oberlin Sansi Memory Association. A topological space (R, τ) will be called a C-C space iff the closed sets in R coincide with the compact sets in R. **THEOREM** 4. If D^* is compact and if every (R, τ_{μ}) is C-C, then (R,τ) is C-C Proof. The hypotheses imply that D^* is C-C, so (R,τ) is C-C by Theorem 1. Let (R^+, τ^+) be the one-point compactification of (R, τ) and let (R^+, τ_μ^+) be the one-point compactification of (R, τ_μ) for each $\mu \in I$. Then we have the following corollary. **COROLLARY** 5. If D^* is closed and if every (R, τ_{μ}) is compact T_2 , then (R^+, τ^+) is homeomorphic to (R^+, τ_{μ}^+) for each $\mu \in I$. Proof. The hypotheses imply that (R, τ) is compact T_2 , so (R, τ) is, by Theorem 2, automatically homeomorphic to (R, τ_{μ}) for each $\mu \in I$. Therefore the one-point compactifications are homeomorphic. **COROLLARY 6.** If the product space $(\times R, \times \tau_{\mu})$ is C-C and if every (R, τ_{μ}) satisfies the first axiom of countability, then (R, τ) is homeomorphic to (R, τ_{μ}) for each $\mu \in I$, provided D* is closed. Proof. If the product space $(\times R, \times \tau_{\mu})$ is C-C, so is (R, τ_{μ}) for each $\mu \in I$, and since every (R, τ_{μ}) satisfies the first axiom of countability, (R, τ_{μ}) is compact T_2 for each $\mu \in I$ by Levine's theorems in (3). **THEOREM** 7. If (G, τ_{μ}) is a topological group for each $\mu \in I$, then (G, τ) is also a topological group. Proof. It is clear that (G, τ) is a subgroup of $(\times G, \times \tau_p)$, a topological group, and hence is a topological group under the induced topology. We will denote by (G, τ_{μ}) a topological group for each $\mu \in I$ in the following theorems. **THEOREM** 8. If every (G, τ_{μ}) is compact and satisfies the second axiom of countability, then (G, τ) is isomorphic to (G, τ_{μ}) for each $\mu \in I$, provided D* is closed and I is countable. Proof. By Theorem 2, (G, τ) is homomorphic to each (G, τ_{μ}) . Under the hypotheses, (G, τ) and all (G, τ_{μ}) are compact topological groups satisfying the second axiom of countability, so the homomorphic map is open. Hence (G, τ) is isomorphic to (G, τ_{μ}) for each $\mu \in I$. **COROLLARY 9.** If the product space $(\times G, \times \tau_{\mu})$ is C-C and if D* is closed, then (G, τ) is isomorphic to (G, τ_{μ}) for each $\mu \in I$. Proof. The hypotheses imply that each (G, τ_{μ}) is compact T_1 by Levine's theorems in (3), then (G, τ_{μ}) is compact T_2 for each $\mu \in I$. #### 3. Inf and sup topologies. In this section we designate by τ the inf topology $\land \{\tau_{\mu}: \mu \in I\}$ and designate by τ' the sup topology $\lor \{\tau_{\mu}: \mu \in I\}$. **THEOREM 10.** (R, τ') is a continuous, one-to-one image of each (R, τ_{μ}) and (R, τ) . Proof. By $\tau \leq \tau_{\mu} \leq \tau'$, the theorem holds evidently. **THEOREM 11.** If at least one of the τ_{μ} is T_i , (i=0,1,2), then (R, τ) is also T_i . If τ' is T_i , (i=0,1,2), then (R, τ) as well as every (R, τ_{μ}) is T_i . Proof. If $\tau_1 \leq \tau_2$ and τ_2 is a T_i -topology, then so is τ_i . Since $\tau \leq \tau_\mu$ for every $\mu \in I$, (R, τ) is T_i if at least one of the τ_μ is T_i . If τ' is T_i , then since $\tau \leq \tau_\mu \leq \tau'$, (R, τ) and all (R, τ_μ) are also T_i . **THEOREM 12.** If at least one of the τ_{μ} is compact (connected), then (R, τ') is also compact (connected). If τ is compact (connected), then (R, τ') as well as every (R, τ_{μ}) is compact (connected). Proof. If $\tau_1 \leq \tau_2$, then every τ_1 -compact (τ_1 -connected) set is also τ_2 -compact (τ_2 -connected). The theorem holds, since $\tau \leq \tau_{\mu} \leq \tau'$. **THEOREM 13.** If (R, τ) is compact and if (R, τ') is T_2 , then (R,τ) , (R,τ') and all (R,τ_{μ}) are homeomorphic to each other. Proof. The hypotheses imply that (R, τ) , (R, τ') and all (R, τ_{μ}) are compact T_2 by Theorem 11 and Theorem 12. Hence they are homeomorphic to each other. A set M of a topological space R will be termed strongly connected (written henceforth as s.c.) iff $M\subseteq U$ or $M\subseteq V$ whenever $M\subseteq U\cup V$, U and V being open sets in R. **THEOREM 14.** If each (R, τ_{μ}) is s.c. and if D* is closed, then both (R, τ) and (R, τ') are s.c. Proof. By Levine's theorems in (4), the hypotheses imply that $(\times R, \times \tau_{\mu})$ is s.c., and D* is also s.c., so (R, τ) is s.c. by Theorem 1. Also, (R, τ') is s.c. by Theorem 10. #### References - 1. H. J. Kowalsky, Topological Spaces, Academic Press, New York and London, 1965. - 2. N. Levine, On families of topologies for a set, Amer. Math. Monthly, 73 (1966) 358-361. - 3. N. Levine, When are compact and cloed equivalent? Amer. Math. Monthly, 72 (1965) 41-44. - 4. N. Levine, Strongly connected sets in topology, Amer. Math. Monthly, 72 (1965) 1098-1101. ## THE INFIMA AND SUPREMA OF FAMILIES OF TOPOLOGIES #### CHING-MU WU ABSTRACT: Let R and I be two nonempty sets and let I consist of two or more elements. For each $\mu \in I$, let τ_{μ} be a topology for R. Then the inf of the set of topologies, $\wedge \{\tau_{\mu}: \mu \in I\}$ is a topology for R, and the sup of these topologies, $\vee \{\tau_{\mu}: \mu \in I\}$ is also a topology for R. The author provides some properties of inf topologies and related group topologies, and also the properties among inf topologies and sup topologies in this paper. # 拓樸族之最大下界及最小上界 吳 青 木 摘要: 命R與I爲二個非空虛集合,且I含有二個或二個以上之元素。對於每一個I中之元素 μ ,命 τ_μ 爲R之一個拓樸,則R之拓樸族所構成之最大下界及最小上界皆成爲R之拓樸。筆者於此篇論文中,給與拓樸族之最大下界與其有關之群拓樸,以及最大下界與最小上界之間之一些性質。